Table C2.1-3 *United States and Mexico*Nominal Shear Strength (R_n) for Seismic and Other In-Plane Loads for Shear Walls ^{1,4,7,8} (Pounds Per Foot) | Assembly Description | Max.
Aspect
Ratio
(h/w) | Fastener Spacing at Panel
Edges² (inches) | | | | Designation
Thickness ^{5,6}
of Stud, | Required
Sheathing | |---|----------------------------------|--|------|------|------|---|-----------------------| | | | 6 | 4 | 3 | 2 | Track and
Blocking
(mils) | Screw
Size | | 15/32" Structural 1 sheathing (4-ply), one side | 2:1³ | 780 | 990 | ı | | 33 or 43 | 8 | | | 2:1 | 890 | 1330 | 1775 | 2190 | 43 or 54 | 8 | | | | | | | | 68 | 10 | | 7/16" OSB, one side | 2:1 ³ | 700 | 915 | - | - | 33 | 8 | | | 2:1 ³ | 825 | 1235 | 1545 | 2060 | 43 or 54 | 8 | | | 2:1 | 940 | 1410 | 1760 | 2350 | 54 | 8 | | | 2:1 | 1232 | 1848 | 2310 | 3080 | 68 | 10 | | 0.018" steel sheet, one side | 2:1 | 390 | - | _ | _ | 33 (min.) | 8 | | 0.027" steel sheet, one side | 4:1 | | 1000 | 1085 | 1170 | 33 (min.) | 8 | - 1. Nominal strength shall be multiplied by the resistance factor (ϕ) to determine design strength or divided by the safety factor (Ω) to determine allowable strength as set forth in Section C2.1. - 2. Screws in the field of the panel shall be installed 12 inches (305 mm) o.c. unless otherwise shown. - 3. Shear wall height to width aspect ratios (h/w) greater than 2:1, but not exceeding 4:1, shall be permitted provided the nominal strength values are multiplied by 2w/h. See Section C2.1. - 4. See Section C2.1 for requirements for sheathing applied to both sides of wall. - 5. Unless noted as (min.), substitution of a stud or track of a different designation thickness is not permitted. - 6. Wall studs and track shall be of ASTM A1003 Structural Grade 33 (Grade 230) Type H steel for members with a designation thickness of 33 and 43 mil, and A1003 Structural Grade 50 (Grade 340) Type H steel for members with a designation thickness equal to or greater than 54 mils. - For wood structural panel sheathed shear walls, tabulated R_n values applicable for short-term load duration (seismic loads). For other in-plane lateral loads of normal or permanent load duration as defined by the AF&PA NDS, the values in the table above for wood structural panel sheathed shear walls shall be multiplied by 0.63 (normal) or 0.56 (permanent). - 8. For SI: 1'' = 25.4 mm, 1 foot = 0.305 m, 1 lb = 4.45 N (This document is an excerpt from AISI S213-07 North American Standard for Cold Formed Steel Framing - Lateral Design for convenience only, and should be considered a guideline only. For design of a constructed metal stud shear wall should be performed by a qualified design professional.) Setbacks of structural walls shall not exceed the *web* depth of the floor *joist* except when designed for the additional loads, but in no case shall the setback exceed four times the *web* depth of the floor *joist* member. ## **C2.1** Available Strength (Factored Resistance) The available strength [factored resistance] shall be determined by using the nominal strength [nominal resistance] shown in Tables C2.1-1 through C2.1-5, as permitted and applicable, and dividing by the appropriate safety factor (Ω) or multiplying by the appropriate resistance factor (φ), as follows: Ω = 2.50 for ASD (seismic) Ω = 2.00 for ASD (wind or other in-plane lateral loads) $\phi = 0.60$ for LRFD (seismic) ϕ = 0.65 for LRFD (wind or other in-plane lateral loads) ϕ = 0.70 for LSD (except as noted below) $\phi = 0.60$ for LSD (gypsum sheathed walls) Where a height to width aspect ratio (h/w) of a *shear wall* segment is greater than the tabulated value, as permitted in footnotes to Tables C2.1-1, C2.1-3 and C2.1-4, the *available strength* [factored resistance] shall be multiplied by 2w/h, but in no case shall the height to width aspect ratio (h/w) exceed 4:1. The available strength [factored resistance] for shear panels with different sheathing materials and fastener configurations applied to the same side of a wall is not cumulative. For walls with material of the same type and nominal strength [nominal resistance] applied to opposite faces of the same wall the available strength [factored resistance] of material of the same capacity is cumulative. Where the material nominal strengths [nominal resistances] are not equal the available strength [factored resistance] shall be either two times the available strength [factored resistance] of the material with the smaller value or shall be taken as the value of the stronger side, whichever is greater. Summing the available strengths [factored resistance] of dissimilar material applied to opposite faces or to the same wall line is not allowed unless permitted by Table C2.1-1 ## **C2.1.1** Design Deflection The deflection of a blocked wood structural panel or sheet steel *shear wall* fastened throughout shall be permitted to be calculated according to the following: $$\delta = \frac{8vh^3}{E_s A_c b} + \omega_1 \omega_2 \frac{vh}{\rho Gt_{sheathing}} + \omega_1^{5/4} \omega_2 \omega_3 \omega_4 \left(\frac{v}{\beta}\right)^2 + \frac{h}{b} \delta_v$$ (Eq. C2.1-1) For SI: $$\delta = \frac{2vh^3}{3E_sA_cb} + \omega_1\omega_2 \frac{vh}{\rho Gt_{sheathing}} + \omega_1^{5/4}\omega_2\omega_3\omega_4 \left(\frac{v}{0.00290\beta}\right)^2 + \frac{h}{b}\delta_v$$ (Eq. C2.1-2) where: A_C = Gross cross-sectional area of *chord* member, in square inches (mm²) b = Width of the *shear wall*, in feet (mm) E_s = Modulus of elasticity of steel = 29,500,000 psi (203,000 MPa) G = Shear modulus of sheathing material, in pounds per square inch (MPa) h = Wall height, in feet (mm) s = Maximum fastener spacing at panel edges, in inches (mm) (This document is an excerpt from AISI S213-07 North American Standard for Cold Formed Steel Framing - Lateral Design for convenience only, and should be considered a guideline only. For design of a constructed metal stud shear wall should be performed by a qualified design professional.)